arsitek

selamat datang di blog rifzky

Minggu, 03 Juni 2012

10 Bangunan Tertinggi di Dunia

10. Jin Mao Tower (Shanghai)
Jin Mao Tower 10 pencakarlangit tertinggi di dunia Jin Mao Tower harfiah. “Golden Prosperity Building” merupakan landmark 88-cerita supertall pencakar langit di daerah Lujiazui distrik Pudong Shanghai, Republik Rakyat Cina. Ini berisi kantor-kantor dan hotel Shanghai Grand Hyatt. Sampai tahun 2007 ini menjadi bangunan tertinggi di RRC, yang tertinggi kelima di dunia dengan ketinggian atap dan tertinggi ketujuh dengan tinggi puncak.
lalui artstyleonline
9. Trump International Hotel dan Tower (Chicago)
The Trump International Hotel dan Tower 9 gedung tertinggi di dunia. The Trump International Hotel dan Tower, juga dikenal sebagai Trump Tower Chicago dan lokal sebagai Trump Tower, adalah kondominium-hotel pencakar langit di pusat kota Chicago, Illinois. Bangunan, dinamai pengembang real estate Donald Trump, dirancang oleh arsitek Adrian Smith dari Skidmore, Owings and Merrill. Bovis Pinjamkan Sewa membangun struktur 92 lantai, yang mencapai ketinggian 1.389 kaki (423 m) termasuk puncak menara tersebut, atapnya topping keluar pada 1.170 kaki (360 m).
Hal ini berdekatan dengan cabang utama Sungai Chicago, dengan pemandangan entri ke Danau Michigan di luar rangkaian jembatan di atas sungai. Bangunan ini menerima publisitas ketika pemenang musim pertama dari acara televisi Apprentice, Bill Rancic, memilih untuk mengelola pembangunan menara.
8. West Tower Guangzhou (Guangzhou)
Menjadi bangunan tertinggi Guangzhou Barat 8 Tower adalah sebuah bangunan publik yang sangat tinggi. Efisiensi energi evaluasi façade yang harus berbeda dibandingkan dengan bangunan umum biasa. Berdasarkan GB50189 kode nasional-2005, “Desain Standar untuk efisiensi Energi Bangunan Publik”, khas tahunan data meteorologi untuk Guangzhou digunakan dan direvisi sesuai dengan karakter arsitektur Guangzhou Tower Barat.
Efisiensi energi desain fasad kulit tunggal dan dinding aliran udara tirai aktif dianalisis dengan alat simulasi energi dinamis dan data cuaca dimodifikasi. Masa pengembalian investasi awal dalam sistem fasad dievaluasi berdasarkan hasil simulasi. Selain itu, hasil konfirmasi skema sistem façade Guangzhou Tower Barat.
7. Willis Tower (Chicago)
Willis Tower, sebelumnya bernama Sears Tower, adalah 108-cerita 1.451 kaki (442 m) pencakar langit di Chicago, Illinois. Pada saat penyelesaian pada tahun 1973, itu adalah gedung tertinggi di dunia, melebihi menara World Trade Center di New York. Saat ini, Willis Tower adalah gedung tertinggi di Amerika Serikat dan kelima struktur berdiri bebas tertinggi di dunia serta bangunan tertinggi kelima di dunia untuk atap. Meskipun hak Sears ‘penamaan berakhir pada tahun 2003, bangunan terus disebut Sears Tower selama beberapa tahun.
Namun, Maret 2009 broker asuransi yang berbasis di London Willis Group Holdings, Ltd, setuju untuk menyewakan sebagian bangunan dan memperoleh hak penamaan bangunan sebagai bagian dari perjanjian.Pada tanggal 16 Juli 2009, jam 10:00 Central Time, bangunan itu secara resmi berganti nama menjadi Willis Tower.
6. Nanjing Greenland Keuangan Pusat (Nanjing)
>Nanjing Greenland Financial Center adalah, 89-cerita 450 meter (1500 kaki) tinggi pencakar langit yang dibangun di Nanjing, Cina. Menara adalah bangunan tertinggi kelima di dunia dan kedua tertinggi di cina belakang lantai observasi Keuangan Dunia Shanghai Center.The 72-cerita, di 287 meter (940 kaki) dari tanah, akan menawarkan pemandangan panorama kota Nanjing serta Sungai Yangtze, yang Ningzheng Ridge gunung dan dua danau di dekatnya.
5. Petronas Towers (Kuala Lumpur)
Menara Kembar Petronas (juga dikenal sebagai Petronas Tower atau hanya Twin Towers), di Kuala Lumpur, Malaysia adalah menara kembar dan gedung tertinggi di dunia, sebelum dikalahkan oleh Taipei 101. Namun, menara masih merupakan bangunan kembar tertinggi di dunia. Mereka adalah gedung tertinggi di dunia 1998-2004 jika diukur dari tingkat pintu masuk utama ke atas struktural, referensi tinggi asli yang digunakan oleh Dewan berbasis di AS pada Bangunan Tinggi dan Urban Habitat dari 1969 (tiga kategori tinggi tambahan diperkenalkan sebagai menara hampir selesai tahun 1996).
4. Pusat Perdagangan Internasional (Hong Kong)
Pusat Perdagangan Internasional adalah lantai 118, 484 m (1590 ft) dalam pembangunan gedung pencakar langit di West Kowloon, Hong Kong, sebagai bagian dari proyek Union Square dibangun di atas Kowloon Station. Pembangunan ini dimiliki dan bersama-sama dikembangkan oleh MTR Corporation Limited dan Sun Hung Kai Properties, metro operator Hong Kong dan pengembang properti terbesar masing-masing.
3. Shanghai World Financial Center (Shanghai)
Shanghai World Financial Center adalah sebuah pencakar langit super tinggi di Pudong, Shanghai, Cina. Ini adalah pencakar langit menggunakan campuran yang terdiri dari perkantoran, hotel, ruang konferensi, deck observasi, dan pusat perbelanjaan di lantai tanah.Park Hyatt Shanghai adalah hotel yang mengandung komponen 174 kamar dan suite.Menempati 79 ke lantai 93, itu adalah hotel tertinggi di dunia, melebihi Grand Hyatt Shanghai di 53 untuk 87 lantai dari tetangga Jin Mao Tower.
2. Taipei 101 (Taipei)
Taipei 101 juga dikenal sebagai Taipei Financial Center, adalah sebuah pencakar langit landmark yang terletak di Distrik Xinyi, Taipei, Taiwan. Bangunan adalah gedung tertinggi di dunia (dengan lantai occupiable) sampai ia melampaui tinggi oleh Khalifa Burj pada tanggal 21 Juli 2007. gedung pencakar langit ini secara resmi bangunan tertinggi sampai pembukaan Khalifa Burj pada 4 Januari 2010.
1. Burj Khalifa (Dubai)
Burj Khalifa sebelumnya dikenal sebagai Burj Dubai, adalah sebuah pencakar langit di Dubai, Uni Emirat Arab, dan struktur buatan manusia tertinggi yang pernah dibangun, di 828 m (2717 ft).Konstruksi dimulai pada tanggal 21 September 2004, dengan bagian luar struktur diselesaikan pada tanggal 1 Oktober 2009. Bangunan ini resmi dibuka pada tanggal 4 Januari 2010. Bangunan ini merupakan bagian dari pembangunan kapal 2 km2 (490-acre) disebut Downtown Burj Khalifa di “First Interchange” di sepanjang Sheikh Zayed Road, di dekat distrik bisnis utama Dubai.
Total biaya untuk proyek Burj Khalifa adalah sekitar US $ 1,5 miliar. Arsitektur menara dan rekayasa yang dilakukan oleh Skidmore, Owings, dan Merrill Chicago. Adrian Smith, yang bekerja dengan Skidmore, Owings and Merrill sampai dengan tahun 2006, adalah arsitek kepala, dan Bill Baker adalah insinyur struktur kepala untuk proyek ini. Kontraktor utama adalah Samsung C & T Korea Selatan, yang juga membangun Taipei 101 dan Petronas Twin Towers.
ILMU BANGUNAN GEDUNG

A.   
Pengertian Ilmu Bangunan Gedung
Yang dimaksud dengan ilmu bangunan adalah ilmu pengetahuan yang mempelajari hal-hal yang berhubungan dengan perencanaan dan pelaksanaan pembuatan maupun perbaikan bangunan. Dalam penyelenggaraan bangunan diusahakan ekonomis dan memenuhi persyaratan tentang bahan, konstruksi maupun pelaksanaannya.
Bangunan adalah wujud fisik hasil pekerjaan konstruksi yang menyatu dengan tempat kedudukan baik yang ada di atas, di bawah tanah dan/atau di air. Bangunan biasanya dikonotasikan dengan rumah, gedung ataupun segala sarana, prasarana atau infrastruktur dalam kebudayaan atau kehidupan manusia dalam membangun peradabannya seperti halnya jembatan dan konstruksinya serta rancangannya, jalan, sarana telekomunikasi, dan lain-lain.
Bangunan yang dimaksud di atas meliputi:
a.       Bangunan merupakan hasil karya orang yang mempunyai tujuan tertentu untuk kepentingan perorangan maupun untuk umum.
b.      Bangunan yang bersifat penambahan atau perubahan dan telah ada menjadi sesuatu yang lain/berbeda, tetapi juga dengan tujuan tertentu dan untuk kepentingan perorangan maupun untuk umum.
Adapun tujuan bangunan tersebut didirikan antara lain:
Bangunan rumah tinggal dibuat orang untuk kepentingan tempat tinggal dalam arti yang luas. Untuk masa sekarang tidak hanya sekedar tempat berlindung atau berteduh tetapi sebagai tempat pembinaan keluarga. Kantor dibuat untuk pelayanan masyarakat, sedangkan jembatan dan bendungan dibuat orang untuk tujuan prasarana kemakmuran rakyat. Kesemua hal di atas disebut dengan bangunan karena tidak dapat dengan mudah dipindahkan mengingat berat kecuali bila dibongkar. Lemari dibuat orang juga mempunyai tujuan anatara lain untuk menyimpan barang, bangku untuk tempat duduk, tetapi benda- benda ini mudah dipindahkan ke tempat lain, untuk itu benda-benda disini tidak dapat dikatakan bangunan. Dalam pembuatannya bagunan tidak cukup hanya satu orang pekerja saja, tetapi kadang-kadang memerlukan ratusan sampai ribuan pekerja tergantung besar kecilnya bangunan yang dibuat.
B.     Jenis Bangunan
Jenis bangunan dapat dibedakan menjadi:
a.       Bangunan teknik sipil kering, antara lain meliputi: bangunan rumah, gedung-gedung. monumen, pabrik, gereja, masjid dan sebagainya.
b.      Bangunan teknik sipil basah, antara lain meliputi: bendungan, bangunan irigasi, saluran air, dermaga pelabuhan, turap-turap, jembatan dan sebagainya.
Untuk sekarang jenis bangunan dibedakan menjadi 3 bagian besar yang dikelola oleh Direktorat Jenderal meliputi Bangunan Gedung, Bangunan Air dan Jalan Jembatan.
Jenis bahan yang digunakan dalam bangunan dapat berupa kayu, bata, beton atau baja. Bahkan dewasa ini bahan bangunan yang digunakan sudah berkembang antara lain dari bahan aluminium atau plastik.
C.     Fungsi Bangunan
Fungsi Pokok Pembuatan Bangunan
Fungsi pembuatan bangunan yang terpenting ialah agar setiap bangunan kuat, dan tidak mudah rusak, sehat untuk ditempati, di samping biayanya relatif murah. Untuk mendapatkan bangunan kuat dan murah tidak perlu konstruksinya terlalu berlebihan. Bila demikian tidak sesuai dengan tujuan dan merupakan pemborosan. Konstruksi bangunan harus diperhitungkan secara teliti berdasarkan syarat-syarat bangunan termasuk perhitungan yang menunjang misalnya mekanika teknik. Keawetan suatu bangunan juga tergantung bahan bangunan yang digunakan, pelaksanaan dalam pembuatan dan juga perawatannya.  Di samping hal tersebut di atas faktor lain yang berpengaruh dan perlu mendapatkan perhatian adalah air tanah, gempa bumi, angin dan sebagainya.
Fungsi bangunan gedung
Fungsi suatu bangunan gedung dapat dikelompokkan menjadi fungsi hunian, fungsi keagamaan, fungsi usaha, fungsi sosial budaya dan fungsi khusus
Fungsi hunian merupakan bangunan gedung dengan fungsi utama sebagai tempat manusia tinggal yang berupa bangunan hunian tunggal, hunian jamak, hunian sementara, dan hunian campuran.
Fungsi keagamaan merupakan bangunan gedung dengan fungsi utama sebagai tempat manusia melakukan ibadah yang berupa bangunan masjid termasuk mushola, bangunan gereja termasuk kapel, pura, wihara, dan kelenteng;
Fungsi usaha merupakan bangunan gedung dengan fungsi utama sebagai tempat manusia melakukan kegiatan usaha yang terdiri dari bangunan gedung perkantoran, perdagangan, perindustrian, perhotelan, wisata dan rekreasi, terminal, dan bangunan gedung tempat penyimpanan
Fungsi sosial dan budaya merupakan bangunan gedung dengan fungsi utama sebagai tempat manusia melakukan kegiatan sosial dan budaya yang terdiri dari bangunan gedung pelayanan pendidikan, pelayanan kesehatan, kebudayaan, laboratorium, dan bangunan gedung pelayanan umum
Fungsi khusus merupakan bangunan gedung dengan fungsi utama yang mempunyai tingkat kerahasiaan tinggi, atau tingkat resiko bahaya tinggi
Reaksi: 

Selasa, 29 Mei 2012

MEKANIKA TEKNIK

1. Mekanika rekayasa

Mekanika teknik atau dikenal juga sebagai mekanika rekayasa atau analisa struktur merupakan bidang ilmu utama yang dipelajari di ilmu teknik sipil. Pokok utama dari ilmu tersebut adalah mempelajari perilaku struktur terhadap beban yang bekerja padanya. Perilaku struktur tersebut umumnya adalah lendutan dan gaya-gaya (gaya reaksi dan gaya internal).
Dalam mempelajari perilaku struktur maka hal-hal yang banyak dibicarakan adalah:
-   Stabilitas
-   keseimbangan gaya
-   kompatibilitas antara deformasi dan jenis tumpuannnya elastisitas
Dengan mengetahui gaya-gaya dan lendutan yang terjadi maka selanjutnya struktur tersebut dapat direncanakan atau diproporsikan dimensinya berdasarkan material yang digunakan sehingga aman dan nyaman (lendutannya tidak berlebihan) dalam menerima beban tersebut.

2. Gaya luar
Adalah muatan dan reaksi yang menciptakan kestabilan atau keseimbangan konstruksi. Muatan yang membebani suatu kontruksi akan dirambatkan oleh kontruksi ke dalam tanah melalui pondasi. Gaya-gaya dari tanah yang memberikan perlawanan terhadap gaya rambat tersebut dinamakan reaksi.

·         Muatan adalah beban yang membebani suatu konstruksi baik berupa berat kendaraan, kekuatan angin, dan berat angin.                                                                                                                                                                              
Muatan-muatan tersebut mempunyai besaran, arah, dan garis kerja, misalnya:
-   Angin bekerja tegak lurus bidang yang menentangnya, dan diperhitungkan misalnya 40 kN/m2, arahnya umum mendatar.
-   Berat kendaraan, merupakan muatan titik yang mempunyai arh gaya tegak lurus bidang singgung roda, dengan besaran misalnya 5 tN.
-   Daya air, bekerja tegak lurus dinding di mana ada air, besarnya daya air dihitung secara hidrostatis, makin dalam makin besar dayanya.
Berdasarkan pengertian tersebut muatan-muatan dapat dibedakan atas beberapa kelompok menurut cara kerjanya.

1.      Ada muatan yang bekerjanya sementara dan ada pula yang terus-menerus (permanen). Mutan yang dimaksud adalah:
1.1.       Muatan mati, yaitu muatan tetap pada konstruksi yang tidak dapat dipindahkan atau tidak habis. Misalnya:
Ø  Berat sendiri konstruksi beton misalnya 2200 kN/m3 , dan
Ø  Berat tegel pada pelat lantai misalnya 72 kN/m2.

2.      Ada muatan yang garis kerjanya dianggap suatu titik, ada yang tersebar. Muatan yang dimaksud adalah:
2.1.      Muatan titik atau muatan terpusat. Yaitu muatan yang garis kerjanya dianggap bekerja melalui satu titik, misalnya:
Ø   Berat seseorang melalui kaki misalnya 60 kN dan
Ø   Berat kolom pada pondasi misalnya 5000 kN;

Muatan terbagi ini dapat dijabarkan sebagai berikut:
Ø  Muatan terbagi rata, yaitu muatan terbagi yang dianggap sama pada setiap satuan luas.
Ø  Muatan terbagi tidak rata teratur, yaitu muatan yang terbagi tidak sama berat untuk setiap satuan luas.

3.      Muatan momen, yaitu muatan momen akibat dari muatan titik pada konstruksi sandaran. Gaya horizontal pada sandaran menyebabkan momen pada balok.

4.      Muatan puntir, suatu gaya nonkoplanar mungkin bekerja pada suatu balok sehingga menimbulkan suatu muatan puntir, namun masih pada batas struktur statik tertentu.


5.      Dalam kehiduypan sehari-hari sering dijumpai muatan yang bekerjanya tidak langsung pada konstruksi, seperti penutup atap ditumpu oleh gording dan tidak langsung pada kuda-kuda.


·         Perletakan
Perletakan adalah suatu konstruksi direncanakan untuk suatau keperluan tertentu.
Tugas utama suatu konstruksi adalah mengumpulkan gaya akibat muatan yang bekerja padanya dan meneruskannya ke bumi. Untuk melaksanakan tugasnya dengan baik maka konstruksi harus berdiri dengan kokoh. Rosenthal menyatakan bahwa semua beban diteruskan ke bumi melalui sesingkat-singkatnya.
           
Kondisi yang harus dipertimbangkan?

Pertama yang harus dipertimbangkan adalah stabilitas konstruksi. Suatu konstruksi akan stabil bila konstruksi diletakkan di atas pondasi yang baik. Pondasi akan melawan gaya aksi yang diakibatkan oleh muatan yang diteruskan oleh konstruksi kepada pondasi. Gaya lawan yang ditimbulkan pada pondasi disebut: Reaksi. Dalam kasus ini pondasi digambarkan sebagai perletakan. Berikut ini diuraikan tiga jenis perletakan yang merupakan jenis perletakan yang umum digunakan. Yaitu perletakan yang dapat menahan momen, gaya vertikal dan gaya horizontal.dan ada maca-macam perletakan yang perlu dipahami yaitu:
Ø  Perletakan sendi, yaitu perletakan terdiri dari poros dan lubang sendi. Pada perletakan demikian dianggap sendinya licin sempurna, sehingga gaya singgung antara poros dan sendi tetap normal terhadap bidang singgung, dan arah gaya ini akan melalui pusat poros.
Ø  Perletakan geser, yaitu perletakan yang selalu memiliki lubang sendi. Apabila poros ini licin sempurna maka poros ini hanya dapat meneruskan gaya yang tegak lurus bidang singgung di mana poros ini diletakkan.
Ø  Perletakan pendel, yaitu suatu perletakan yang titik tangkap dan garis kerjanya diketahui.
Ø  Perletakan jepit, perletakan ini seolah-olah dibuat dari balok yang ditanamkan pada perletakannya, demikian sehingga mampu menahan gaya-gaya maupun momen dan bahkan dapat menahan torsi.

3. Gaya Dalam

Gaya dalam adalah gaya rambat yang diimbangi oleh gaya yang berasal dari bahan konstruksi, berupa gaya lawan, dari konstruksi.
Analisis hitungan gaya dalam       dan urutan hitungan ini dapat diuraikan secara singkat sebagai berikut:
1.      Menetapkan dan menyederhanakan konstruksi menjadi suatu sistem yang memenuhi syarat yang diminta.
2.      Menetapkan muatan yang bekerja pada konstruksi ini.
3.      Menghitung keseimbangan luar.
4.      Menghitung keseimbangan dalam.
5.      Memeriksa kembali semua hitungan.
Dengan syarat demikian konstruksi yang dibahas akan digambarkan sebagai suatu garis sesuai dengan sumbu konstruksi, yang selanjutnya disebut: Struktur
Misalkan pada sebuah balok dijepit salah satu ujungnya dan dibebani oleh gaya P seperti pada gambar 3.2.

gambar 3.2
maka dapat diketahui dalam konstruksi tersebut timbul gaya dalam.
Apabila konstruksi dalam keadaan seimbang, maka pada suatu titik X sejauh x dari B akan timbul gaya dalam yang mengimbangi P.
Gaya dalam yang mengimbangi gaya aksi ini tentunya bekerja sepanjang sumbu batang sama besar dan mengarah berlawanan dengan gaya aksi ini. Gaya dalam ini disebut Gaya normal (N).
Bila gaya aksi berbalik arah maka berbalik pula arah gaya normalnya. Nilai gaya normal di titik X ini dinyatakan sebagai Nx.
Gambar 3.3
Gambar 3.3 menggambarkan gaya P yang merambat sampai titik X dan menimbulkan gaya sebesar P’ dan M’. Apabila struktur dalam keadaan seimbang maka tiap-tiap bagian harus pula dalam keadaan seimbang. Selanjutnya gaya P’dan M’ harus pula diimbangi oeh suatu gaya dalam yang sama besar dan berlawanan arah, yaitu gaya dalam Lx dan Mx. Gaya tersebut merupakan sumbangan dari bagian XA yang mengimbangi P’M’.
Gaya dalam yang tegak lurus sumbu disebut Gaya lintang, disingkat LX dan momen yang menahan lentur pada bagian ini disebut Momen Lentur disingkat MX.
Dari uraian di atas, gaya-gaya dalam dibedakan menjadi tiga :
  1. Gaya normal (N), yaitu gaya dalam yang bekerja searah sumbu balok.
  2. Gaya lintang (L), yaitu gaya dalam yang bekerja tegak lurus sumbu balok.
  3. Momen lentur (F), yaitu gaya dalam yang menahan lemtur sumbu balok

Gaya dalam bekerja pada titik berat sepanjang garis struktur. Untuk menghitung gaya dalam ini diperlukan pengertian tanda. Menurut perjanjian tanda yang lazim digunakan di dalam Mekanika Rekayasa seperti terlukis pada gambar 4.3.
Gaya Normal diberi tanda positif (+) apabila gaya itu cenderung menimbulkan gaya tarik pada batang dan diberi tanda negatif (-) apabila gaya itu cenderung menimbulkan sifat desak.
Gaya lintang diberi tanda positif (+) apabila gaya itu cenderung menimbulkan patah dan putaran jarum jam, dan diberikan tanda negatif (-) apabila gaya itu cenderung menimbulkan kebalikannya.
Momen lentur diberi tanda positif (+) apabila gaya itu menyebabkan sumbu batang cekung ke atas dan diberi tanda negatif (-) apabila gaya itu menyebabkan sumbu batang cekung ke bawah.


4. Hubungan antara Muatan, Gaya Lintang, dan Momen

Untuk membahas pertanyaan tersebut, harus mempelajari suatu struktur sederhana yang dibebani muatan penuh terbagi rata.
Gaya dalam di m dapat dihitung sebesar:
                                   
            Mm = Va.x – ½ qx2 =
                      ½ qlx – ½ qx2...................(1.1)
            Lm = ½ ql – qx............................(1.2)

            Gaya dalam di n dapat dihitung sebesar:
           
            Mn = Va (x + dx) – 1/2q (x + dx)2............(1.4)
            Ln  = ½ qL – q (x + dx)............................(1.5)

                        Persamaan (1.4) dan (1.5) tersebut dapat ditulis
                        Pula sebagai:

                        Mn = Mm + dM =
                                 Mm + Lm.dx – q.dx.1/2 dx..............(1.6)
                        Ln = Lm + dL = Lm – q.dx........................(1.7)

Persamaan tersebut setelah diselesaikan didapat:
            dM/dx = Lx..............................................(1.8)
            dL/dx = - q...............................................(1.9)
Kiranya perlu ditambahkan bahwa perubahan nilai beban ditiap titik adalah tetap, yang berarti dq/dx = 0
           
Dengan demikian memang terbukti adanya hubungan antara muatan, gaya lintang dan momen. Hubungan itu tampak pula pada persamaan-persamaan di atas, yaitu: gaya lintang merupakan fungsi turunan dari momen , dan beban merupakan fungsi turunan dari gaya lintang, atau sebaliknya gaya lintang merupakan jumlah integrasi dari beban, dan momen merupakan jumlah integrasi dari gaya lintang.
Satuan Konversi untuk Pembebanan

1 mpa = 1000 kpa = 1 ksi
1 mpa = 1 n/mm2 = 10 kg/cm2 = 100t/m2
1 mpa =100t/m2 = 100.000kg/m2
1 kpa  = 100kg/m2
1 mpa = 1000 kpa
1 kpa  =1kn /m2 1kn =100kg/m2
 fc beton ( mutu beton) missal k 225 kg/cm2 dibagi 10 = 22,5 mpa
 fy main  ( mutu baja pokok ) = 400 mpa = 40.000t/m2
 fy sec     ( mutu baja sengakang = 240 mpa = 24000t/m)


Satuan Konversi untuk Gaya

N                  = 0.001 kN
[KN]             = 1 kN
MN               = 1000 kN
lb (pon)         = 0044482 kN
klb (kilopon) = 4.4482 kN

BETON




Pengertian Beton dan Sejarah Beton
http://www.lisaconcrete.com/wp-content/uploads/2009/05/stockyard_ezg_2.jpg
Beton adalah suatu material yang secara harfiah merupakan bentuk dasar dari kehidupan sosial modern. Beton sendiri adalah merupakan campuran yang homogen antara semen, air dan aggregat. Karakteristik beton adalah mempunyai tegangan hancur tekan yang tinggi serta tegangan hancur tarik yang rendah.
Menurut Nawy (1985:8) beton dihasilkan dari sekumpulan interaksi mekanis dan kimia sejumlah material pembentuknya. DPU-LPMB memberikan definisi tentang beton sebagai campuran antara semen portland atau semen hidrolik yang lainnya, agregat halus, agregat kasar dan air,dengan atau tanpa bahan tambahan membentuk massa padat (SK.SNI T-15-1990-03:1).

Pada tahun 1801, F. Coignet menerbitkan tulisannya tentang prinsip-prinsip konstruksi dengan meninjau kelemahan bahan beton terhadap tariknya. Kemudian pada tahun 1850, J.L.Lambot untuk pertama kalinya membuat kapal kecil dari bahan semen untuk di pamerkan pada pameran dunia tahun 1855. Lalu J. Monir, seorang ahli taman dari Prancis, mematenkan rangka metal sebagai tulangan beton untuk mengatasi
tariknya pada tempat tamannya. Pada tahun 1886,seorang warga negara Jerman yang bernama Koenen menerbitkan tulisan mengenai teori dan perancangan struktur beton.


Sejarah penemuan teknologi beton  dimulai dari :
  • Aspdin (1824) Penemu Portland Cement;
  • J.L Lambot (1850 ) memperkenal konsep dasar konstruksi komposit (gabungan dua bahan konstruksi yang berbeda yang bekerja bersama – sama memikul beban);
  • F. Coignet (1861) melakukan uji coba penggunaan pembesian pada konstruksi atap, pipa dan kubah;
  • Gustav Wayss & Koenen ( 1887) serta Hennebique memperkenalkan sengkang sebagai penahan gaya geser dan penggunaan balok “ T ” untuk mengurangi beban akibat  berat sendiri;
  • Neuman  melakukan analisis letak garis netral;
  • Considere menemukan manfaat kait pada ujung tulangan; dan
  • E. Freyssinet memperkenalkan dasar – dasar beton pratekan.
Contoh Pemakaian Konstruksi Beton pada Jamannya:
  • Bangunan kubah Pantheon didirikan th 27 SM;
  • Pemakaian Pot bunga dari beton yang menggunakan kawat anyaman (produk dipatenkan oleh Joseph Monier tahun 1867);
  • Pembuatan kapal beton yang dilengkapi penulangan (tahun 1855);
  • Jembatan Lamnyong-Darussalam; dan
  • Menara Masjid Raya Baiturrahman Banda Aceh.
Sejarah Analisis dasar perhitungan di Indonesia:
  • PBI 1955 – PBI 1971  yang lebih dikenal dengan perhitungan lentur cara – n; dan
  • SK SNI 1991 ( T-15-1991-03) tentang Standar  Tata Cara Perhitungan Struktur Beton.

Sifat dan karakteristik beton:
  • Karakteristik beton adalah mempunyai tegangan hancur tekan yang tinggi serta tegangan hancur tarik yang rendah;
  • Beton tidak dapat dipergunakan pada elemen konstruksi yang memikul momen lengkung atau tarikan;
  • Beton sangat lemah dalam menerima gaya tarik, sehingga akan terjadi retak yang makin – lama makin besar;
  • Proses kimia pengikatan semen dengan air menghasilkan panas dan dikenal dengan proses hidrasi;
  • Air berfungsi juga sebagai pelumas untuk mengurangi gesekan antar butiran sehingga   beton dapat dipadatkan dengan  mudah;
  • Kelebihan air dari jumlah yang dibutuhkan akan menyebabkan butiran semen berjarak semakin jauh sehingga kekuatan beton akan berkurang;
  • Dengan perkiraan komposisi (mix desain) dibuat rekayasa untuk memeriksa dan mengetahui perbandingan campuran agar dihasilkan kekuatan beton yang tinggi;
  • Selama proses pengerasan campuran beton, kelembaban beton harus dipertahankan untuk mendapatkan hasil yang direncanakan;
  • Setelah 28 hari,  beton akan mencapai kekuatan penuh dan elemen konstruksi akan mampu memikul beban luar yang bekerja padanya;
  • Untuk menjaga keretakan yang lebih lanjut pada suatu penampang balok, maka dipasang tulangan baja pada daerah yang tertarik;
  • Pada beton bertulang memanfaatkan sifat beton yang kuat dalam menerima gaya tekan serta tulangan baja yang kuat menerima gaya tarik;
  • Dari segi biaya, beton menawarkan kemampuan tinggi dan harga yang relative rendah;
  • Beton hampir tidak memerlukan perawatan dan masa konstruksinya mencapai 50 tahun serta elemen konstruksinya yang mempunyai kekakuan tinggi serta aman terhadap bahaya kebakaran;
  • Salah satu kekurangan yang besar adalah berat sendiri konstruksi; dan
  • Kelemahan lainnya adalah perubahan volume sebagai fungsi waktu berupa susut dan rangkak.
Beton dibedakan dalam 2 kelompok besar yaitu:
  • Beton keras
Sifat-sifat beton keras yang penting adalah kakuatan karakteristik, kekuatan tekan, tegangan dan regangan, susut dan rangkak, reaksi terhadap temperatur, keawetan dan kekedapan terhadap air . Dari semua sifat tersebut yang terpenting adalah kekuatan tekan beton karena merupakan gambaran dari mutu beton yang ada kaitannya dengan strukturt beton. Berbagai test uji kekuatan dilakukan pada beton keras ini antara lain:
  1. Uji kekuatan tekan (compression test);
  2. Uji kekuatan tarik belah (spillting tensile test);
  3. Uji kekuatan lentur;
  4. Uji lekatan antara beton dan tulangan; dan
  5. Uji Modulus Elastisitas dan lain sebagainya.
  • Beton segar
Ada 2 hal yang harus dipenuhi ketika membuat beton:
  1. Sifat-sifat yang harus dipenuhi dalam jangka waktu lama oleh beton yang mengeras, seperti kekuatan, keawetan, dan kestabilan volume; dan
  2. Sifat-sifat yang harus dipenuhi dalam jangka waktu pendek ketika beton dalam kondisi plastis (workability) atau kemudahan pengerjaan tanpa adanya bleeding dan segregation.
Walaupun begitu adalah penting untuk mendapatkan beberapa dari sifat workabilitas karena penting untuk control kualitas. Pengukuran workabilitas yang telah dikembangkan antara lain:
  1. Slump test;
  2. Compaction test;
  3. Flow test;
  4. Remoulding test;
  5. Penetration test; dan
  6. Mixer test.
Parameter-parameter yang paling mempengaruhi kekuatan beton adalah:
  • Kualitas semen;
  • Proporsi semen dalam campuran beton;
  • Kekuatan dan kebersihan agregat;
  • Ikatan/adhesi antar pasta semen dan agregat;
  • Pencampuran yang cukup dari bahan-bahan pembentuk beton; dan
  • Pemadatan beton dan perawatan. 
Seperti disebutkan oleh L.J. Murdock dan K.M. Brock bahwa “kecakapan tenaga kerja adalah salah satu faktor penting dalam produksi suatu bangunan. 3 kinerja yang dibutuhkan dalam pembuatan beton:
  • Memenuhi kriteria konstruksi yaitu mudah dikerjakan dan dibentuk serta mempunyai nilai ekonomi;
  • Kekuatan tekan tinggi; dan
  • Durabilitas atau keawetan tinggi.   
Agregat yang dipakai  untuk campuran beton :
  • Agregat halus ( pasir ) dengan diameter maksimal 1 cm; dan
  • Agregat kasar ( split ) dengan diameter 2 cm atau lebih.

Kelebihan beton:
  • Dapat dibentuk sesuai keinginan;
  • Mampu memikul beban tekan yang berat;
  • Tahan terhadap temperatur tinggi; dan
  • Biaya pemeliharaan rendah/ kecil.
Kekurangan beton:
  • Bentuk yang sudah dibuat sulit diubah;
  • Pelaksanaan pekerjaan membutuhkan ketelitian yang tinggi;
  • Berat;
  • Daya pantul suara besar;
  • Membutuhkan cetakan sebagai alat pembentuk;
  • Tidak memiliki kekuatan tarik;
  • Setelah dicampur beton segera mengeras; dan
  • Beton yang mengeras sebelum pengecoran, tidak bisa didaur ulang.
Menurut SNI-15-1990-03, untuk penggunaan beton dengan kekuatan tidak lebih dari 10 MPa boleh menggunakan campuran 1 pc:2 psr:3 batu pecah/split dengan slump untuk pengukuran pengerjaannya tidak lebih dari 100 mm.

Pengerjaan beton dengan kekuatan tekan hingga 20 MPa boleh menggunakan penakaran volume, tetapi pengerjaan beton dengan kekuatan tekan lebih dari 20 MPa harus menggunakan campuran berat.    

Salah satu yang kita kenal adalah Beton Ringan (lightweight concrete) atau yang lebih dikenal dengan sebutan Hebel. Beton ringan adalah beton yang memiliki berat jenis (density) lebih ringan daripada beton pada umumnya. Beton ringan bisa disebut sebagai beton ringan aerasi (Aerated Lightweight Concrete/ALC) atau sering disebut juga (Autoclaved Aerated Concrete/ AAC) yang mempunyai bahan baku utama terdiri dari pasir silika, kapur, semen, air, ditambah dengan suatu bahan pengembang yang kemudian dirawat dengan tekanan uap air.

Pada umumnya berat beton ringan berkisar antara 600 – 1600 kg/m3. Teknologi material bahan bangunan berkembang terus, salah satunya beton ringan aerasi (Aerated Lightweight Concrete/ALC) atau sering disebut juga (Autoclaved Aerated Concrete/ AAC). Sebutan lainnya Autoclaved Concrete, Cellular Concrete (semen dengan cairan kimia penghasil gelembung udara ), Porous Concrete, dan di Inggris disebut Aircrete and Thermalite. 
Beton ringan AAC ini pertama kali dikembangkan di Swedia pada tahun 1923 sebagai alternatif material bangunan untuk mengurangi penggundulan hutan. Beton ringan AAC ini kemudian dikembangkan lagi oleh Joseph Hebel di Jerman Barat di tahun 1943. Pada tahun 1967 bekerja sama dengan Asahi Chemicals dibangun pabrik Hebel pertama di Jepang.

Sampai saat ini Hebel telah berada di 29 negara dan merupakan produsen beton aerasi terbesar di dunia. Di Indonesia sendiri beton ringan mulai dikenal sejak tahun 1995, saat didirikannya PT Hebel Indonesia di Karawang Timur, Jawa Barat. Ada beberapa kelebihan dari Beton ringan atau Autoclaved Aerated Concrete (AAC), yaitu:
  • Balok AAC mudah dibentuk;
  • Karena ukurannya yang akurat tetapi mudah dibentuk, sehingga dapat meminimalkan sisa-sisa bahan bangunan yang tak terpakai;
  • AAC dapat mempermudah proses konstruksi;
  • Bobotnya yang ringan mengurangi biaya transportasi;
  • Karena ringan, tukang bangunan tidak cepat lelah;
  • Mengurangi biaya penguat atau pondasi;
  • Waktu pembangunan lebih pendek;
  • Kedap suara;
  • Anti jamur;
  • Anti serangga;
  • Nyaman.
Selain kelebihan, Beton AAC juga memiliki beberapa kelemahan, yaitu:
  • Karena ukurannya yang besar, untuk ukuran yang tanggung, akan memakan waste yang cukup besar;
  • Perekat yang digunakan harus disesuaikan dengan ketentuan produsennya, umumnya adalah semen instan;
  • Nilai kuat tekannya (compressive strength) terbatas, sehingga sangat tidak dianjurkan penggunaan untuk perkuatan (struktural); dan
  • Harganya cenderung lebih mahal dari bata konvesional.
Ada tiga macam cara membuat beton aerasi, yaitu:
  • Yang paling sederhana yaitu dengan memberikan agregat/campuran isian beton ringan;
  • Menghilangkan agregat halus (agregat halusnya disaring, contohnya debu/abu terbangnya dibersihkan); dan
  • Meniupkan atau mengisi udara di dalam beton.